Computes the categorical focal crossentropy loss.
Source:R/metrics.R
metric_categorical_focal_crossentropy.RdComputes the categorical focal crossentropy loss.
Usage
metric_categorical_focal_crossentropy(
y_true,
y_pred,
alpha = 0.25,
gamma = 2,
from_logits = FALSE,
label_smoothing = 0,
axis = -1L
)Arguments
- y_true
Tensor of one-hot true targets.
- y_pred
Tensor of predicted targets.
- alpha
A weight balancing factor for all classes, default is
0.25as mentioned in the reference. It can be a list of floats or a scalar. In the multi-class case, alpha may be set by inverse class frequency by usingcompute_class_weightfromsklearn.utils.- gamma
A focusing parameter, default is
2.0as mentioned in the reference. It helps to gradually reduce the importance given to simple examples in a smooth manner. Whengamma= 0, there is no focal effect on the categorical crossentropy.- from_logits
Whether
y_predis expected to be a logits tensor. By default, we assume thaty_predencodes a probability distribution.- label_smoothing
Float in
[0, 1].If >0then smooth the labels. For example, if0.1, use0.1 / num_classesfor non-target labels and0.9 + 0.1 / num_classesfor target labels.- axis
Defaults to
-1. The dimension along which the entropy is computed.
Examples
See also
Other losses: Loss() loss_binary_crossentropy() loss_binary_focal_crossentropy() loss_categorical_crossentropy() loss_categorical_focal_crossentropy() loss_categorical_generalized_cross_entropy() loss_categorical_hinge() loss_circle() loss_cosine_similarity() loss_ctc() loss_dice() loss_hinge() loss_huber() loss_kl_divergence() loss_log_cosh() loss_mean_absolute_error() loss_mean_absolute_percentage_error() loss_mean_squared_error() loss_mean_squared_logarithmic_error() loss_poisson() loss_sparse_categorical_crossentropy() loss_squared_hinge() loss_tversky() metric_binary_crossentropy() metric_binary_focal_crossentropy() metric_categorical_crossentropy() metric_categorical_hinge() metric_hinge() metric_huber() metric_kl_divergence() metric_log_cosh() metric_mean_absolute_error() metric_mean_absolute_percentage_error() metric_mean_squared_error() metric_mean_squared_logarithmic_error() metric_poisson() metric_sparse_categorical_crossentropy() metric_squared_hinge()
Other metrics: Metric() custom_metric() metric_auc() metric_binary_accuracy() metric_binary_crossentropy() metric_binary_focal_crossentropy() metric_binary_iou() metric_categorical_accuracy() metric_categorical_crossentropy() metric_categorical_hinge() metric_concordance_correlation() metric_cosine_similarity() metric_f1_score() metric_false_negatives() metric_false_positives() metric_fbeta_score() metric_hinge() metric_huber() metric_iou() metric_kl_divergence() metric_log_cosh() metric_log_cosh_error() metric_mean() metric_mean_absolute_error() metric_mean_absolute_percentage_error() metric_mean_iou() metric_mean_squared_error() metric_mean_squared_logarithmic_error() metric_mean_wrapper() metric_one_hot_iou() metric_one_hot_mean_iou() metric_pearson_correlation() metric_poisson() metric_precision() metric_precision_at_recall() metric_r2_score() metric_recall() metric_recall_at_precision() metric_root_mean_squared_error() metric_sensitivity_at_specificity() metric_sparse_categorical_accuracy() metric_sparse_categorical_crossentropy() metric_sparse_top_k_categorical_accuracy() metric_specificity_at_sensitivity() metric_squared_hinge() metric_sum() metric_top_k_categorical_accuracy() metric_true_negatives() metric_true_positives()