Computes the categorical focal crossentropy loss.
Source:R/metrics.R
metric_categorical_focal_crossentropy.Rd
Computes the categorical focal crossentropy loss.
Usage
metric_categorical_focal_crossentropy(
y_true,
y_pred,
alpha = 0.25,
gamma = 2,
from_logits = FALSE,
label_smoothing = 0,
axis = -1L
)
Arguments
- y_true
Tensor of one-hot true targets.
- y_pred
Tensor of predicted targets.
- alpha
A weight balancing factor for all classes, default is
0.25
as mentioned in the reference. It can be a list of floats or a scalar. In the multi-class case, alpha may be set by inverse class frequency by usingcompute_class_weight
fromsklearn.utils
.- gamma
A focusing parameter, default is
2.0
as mentioned in the reference. It helps to gradually reduce the importance given to simple examples in a smooth manner. Whengamma
= 0, there is no focal effect on the categorical crossentropy.- from_logits
Whether
y_pred
is expected to be a logits tensor. By default, we assume thaty_pred
encodes a probability distribution.- label_smoothing
Float in
[0, 1].
If >0
then smooth the labels. For example, if0.1
, use0.1 / num_classes
for non-target labels and0.9 + 0.1 / num_classes
for target labels.- axis
Defaults to
-1
. The dimension along which the entropy is computed.
Examples
See also
Other losses: Loss()
loss_binary_crossentropy()
loss_binary_focal_crossentropy()
loss_categorical_crossentropy()
loss_categorical_focal_crossentropy()
loss_categorical_hinge()
loss_cosine_similarity()
loss_ctc()
loss_dice()
loss_hinge()
loss_huber()
loss_kl_divergence()
loss_log_cosh()
loss_mean_absolute_error()
loss_mean_absolute_percentage_error()
loss_mean_squared_error()
loss_mean_squared_logarithmic_error()
loss_poisson()
loss_sparse_categorical_crossentropy()
loss_squared_hinge()
loss_tversky()
metric_binary_crossentropy()
metric_binary_focal_crossentropy()
metric_categorical_crossentropy()
metric_categorical_hinge()
metric_hinge()
metric_huber()
metric_kl_divergence()
metric_log_cosh()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_poisson()
metric_sparse_categorical_crossentropy()
metric_squared_hinge()
Other metrics: Metric()
custom_metric()
metric_auc()
metric_binary_accuracy()
metric_binary_crossentropy()
metric_binary_focal_crossentropy()
metric_binary_iou()
metric_categorical_accuracy()
metric_categorical_crossentropy()
metric_categorical_hinge()
metric_cosine_similarity()
metric_f1_score()
metric_false_negatives()
metric_false_positives()
metric_fbeta_score()
metric_hinge()
metric_huber()
metric_iou()
metric_kl_divergence()
metric_log_cosh()
metric_log_cosh_error()
metric_mean()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_iou()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_mean_wrapper()
metric_one_hot_iou()
metric_one_hot_mean_iou()
metric_poisson()
metric_precision()
metric_precision_at_recall()
metric_r2_score()
metric_recall()
metric_recall_at_precision()
metric_root_mean_squared_error()
metric_sensitivity_at_specificity()
metric_sparse_categorical_accuracy()
metric_sparse_categorical_crossentropy()
metric_sparse_top_k_categorical_accuracy()
metric_specificity_at_sensitivity()
metric_squared_hinge()
metric_sum()
metric_top_k_categorical_accuracy()
metric_true_negatives()
metric_true_positives()