Computes the cross-entropy loss between true labels and predicted labels.
Source:R/losses.R
loss_binary_crossentropy.RdUse this cross-entropy loss for binary (0 or 1) classification applications. The loss function requires the following inputs:
y_true(true label): This is either 0 or 1.y_pred(predicted value): This is the model's prediction, i.e, a single floating-point value which either represents a logit, (i.e, value in[-inf, inf]whenfrom_logits=TRUE) or a probability (i.e, value in[0., 1.]whenfrom_logits=FALSE).
Usage
loss_binary_crossentropy(
y_true,
y_pred,
from_logits = FALSE,
label_smoothing = 0,
axis = -1L,
...,
reduction = "sum_over_batch_size",
name = "binary_crossentropy",
dtype = NULL
)Arguments
- y_true
Ground truth values. shape =
[batch_size, d0, .. dN].- y_pred
The predicted values. shape =
[batch_size, d0, .. dN].- from_logits
Whether to interpret
y_predas a tensor of logit values. By default, we assume thaty_predis probabilities (i.e., values in[0, 1)).- label_smoothing
Float in range
[0, 1].When 0, no smoothing occurs. When > 0, we compute the loss between the predicted labels and a smoothed version of the true labels, where the smoothing squeezes the labels towards 0.5. Larger values oflabel_smoothingcorrespond to heavier smoothing.- axis
The axis along which to compute crossentropy (the features axis). Defaults to
-1.- ...
For forward/backward compatability.
- reduction
Type of reduction to apply to the loss. In almost all cases this should be
"sum_over_batch_size". Supported options are"sum","sum_over_batch_size","mean","mean_with_sample_weight"orNULL."sum"sums the loss,"sum_over_batch_size"and"mean"sum the loss and divide by the sample size, and"mean_with_sample_weight"sums the loss and divides by the sum of the sample weights."none"andNULLperform no aggregation. Defaults to"sum_over_batch_size".- name
Optional name for the loss instance.
- dtype
The dtype of the loss's computations. Defaults to
NULL, which means usingconfig_floatx().config_floatx()is a"float32"unless set to different value (viaconfig_set_floatx()). If akeras$DTypePolicyis provided, then thecompute_dtypewill be utilized.
Examples
y_true <- rbind(c(0, 1), c(0, 0))
y_pred <- rbind(c(0.6, 0.4), c(0.4, 0.6))
loss <- loss_binary_crossentropy(y_true, y_pred)
lossRecommended Usage: (set from_logits=TRUE)
With compile() API:
model %>% compile(
loss = loss_binary_crossentropy(from_logits=TRUE),
...
)As a standalone function:
# Example 1: (batch_size = 1, number of samples = 4)
y_true <- op_array(c(0, 1, 0, 0))
y_pred <- op_array(c(-18.6, 0.51, 2.94, -12.8))
bce <- loss_binary_crossentropy(from_logits = TRUE)
bce(y_true, y_pred)# Example 2: (batch_size = 2, number of samples = 4)
y_true <- rbind(c(0, 1), c(0, 0))
y_pred <- rbind(c(-18.6, 0.51), c(2.94, -12.8))
# Using default 'auto'/'sum_over_batch_size' reduction type.
bce <- loss_binary_crossentropy(from_logits = TRUE)
bce(y_true, y_pred)# Using 'sample_weight' attribute
bce(y_true, y_pred, sample_weight = c(0.8, 0.2))# 0.243
# Using 'sum' reduction` type.
bce <- loss_binary_crossentropy(from_logits = TRUE, reduction = "sum")
bce(y_true, y_pred)# Using 'none' reduction type.
bce <- loss_binary_crossentropy(from_logits = TRUE, reduction = NULL)
bce(y_true, y_pred)Default Usage: (set from_logits=FALSE)
# Make the following updates to the above "Recommended Usage" section
# 1. Set `from_logits=FALSE`
loss_binary_crossentropy() # OR ...('from_logits=FALSE')## <LossFunctionWrapper(<function binary_crossentropy at 0x0>, kwargs={'from_logits': False, 'label_smoothing': 0.0, 'axis': -1})>
## signature: (y_true, y_pred, sample_weight=None)
# 2. Update `y_pred` to use probabilities instead of logits
y_pred <- c(0.6, 0.3, 0.2, 0.8) # OR [[0.6, 0.3], [0.2, 0.8]]See also
Other losses: Loss() loss_binary_focal_crossentropy() loss_categorical_crossentropy() loss_categorical_focal_crossentropy() loss_categorical_generalized_cross_entropy() loss_categorical_hinge() loss_circle() loss_cosine_similarity() loss_ctc() loss_dice() loss_hinge() loss_huber() loss_kl_divergence() loss_log_cosh() loss_mean_absolute_error() loss_mean_absolute_percentage_error() loss_mean_squared_error() loss_mean_squared_logarithmic_error() loss_poisson() loss_sparse_categorical_crossentropy() loss_squared_hinge() loss_tversky() metric_binary_crossentropy() metric_binary_focal_crossentropy() metric_categorical_crossentropy() metric_categorical_focal_crossentropy() metric_categorical_hinge() metric_hinge() metric_huber() metric_kl_divergence() metric_log_cosh() metric_mean_absolute_error() metric_mean_absolute_percentage_error() metric_mean_squared_error() metric_mean_squared_logarithmic_error() metric_poisson() metric_sparse_categorical_crossentropy() metric_squared_hinge()