Computes the cross-entropy loss between true labels and predicted labels.
Source:R/losses.R
loss_binary_crossentropy.Rd
Use this cross-entropy loss for binary (0 or 1) classification applications. The loss function requires the following inputs:
y_true
(true label): This is either 0 or 1.y_pred
(predicted value): This is the model's prediction, i.e, a single floating-point value which either represents a logit, (i.e, value in[-inf, inf]
whenfrom_logits=TRUE
) or a probability (i.e, value in[0., 1.]
whenfrom_logits=FALSE
).
Usage
loss_binary_crossentropy(
y_true,
y_pred,
from_logits = FALSE,
label_smoothing = 0,
axis = -1L,
...,
reduction = "sum_over_batch_size",
name = "binary_crossentropy",
dtype = NULL
)
Arguments
- y_true
Ground truth values. shape =
[batch_size, d0, .. dN]
.- y_pred
The predicted values. shape =
[batch_size, d0, .. dN]
.- from_logits
Whether to interpret
y_pred
as a tensor of logit values. By default, we assume thaty_pred
is probabilities (i.e., values in[0, 1)).
- label_smoothing
Float in range
[0, 1].
When 0, no smoothing occurs. When > 0, we compute the loss between the predicted labels and a smoothed version of the true labels, where the smoothing squeezes the labels towards 0.5. Larger values oflabel_smoothing
correspond to heavier smoothing.- axis
The axis along which to compute crossentropy (the features axis). Defaults to
-1
.- ...
For forward/backward compatability.
- reduction
Type of reduction to apply to the loss. In almost all cases this should be
"sum_over_batch_size"
. Supported options are"sum"
,"sum_over_batch_size"
orNULL
.- name
Optional name for the loss instance.
- dtype
The dtype of the loss's computations. Defaults to
NULL
, which means usingconfig_floatx()
.config_floatx()
is a"float32"
unless set to different value (viaconfig_set_floatx()
). If akeras$DTypePolicy
is provided, then thecompute_dtype
will be utilized.
Examples
y_true <- rbind(c(0, 1), c(0, 0))
y_pred <- rbind(c(0.6, 0.4), c(0.4, 0.6))
loss <- loss_binary_crossentropy(y_true, y_pred)
loss
Recommended Usage: (set from_logits=TRUE
)
With compile()
API:
model %>% compile(
loss = loss_binary_crossentropy(from_logits=TRUE),
...
)
As a standalone function:
# Example 1: (batch_size = 1, number of samples = 4)
y_true <- op_array(c(0, 1, 0, 0))
y_pred <- op_array(c(-18.6, 0.51, 2.94, -12.8))
bce <- loss_binary_crossentropy(from_logits = TRUE)
bce(y_true, y_pred)
# Example 2: (batch_size = 2, number of samples = 4)
y_true <- rbind(c(0, 1), c(0, 0))
y_pred <- rbind(c(-18.6, 0.51), c(2.94, -12.8))
# Using default 'auto'/'sum_over_batch_size' reduction type.
bce <- loss_binary_crossentropy(from_logits = TRUE)
bce(y_true, y_pred)
# Using 'sample_weight' attribute
bce(y_true, y_pred, sample_weight = c(0.8, 0.2))
# 0.243
# Using 'sum' reduction` type.
bce <- loss_binary_crossentropy(from_logits = TRUE, reduction = "sum")
bce(y_true, y_pred)
# Using 'none' reduction type.
bce <- loss_binary_crossentropy(from_logits = TRUE, reduction = NULL)
bce(y_true, y_pred)
Default Usage: (set from_logits=FALSE
)
# Make the following updates to the above "Recommended Usage" section
# 1. Set `from_logits=FALSE`
loss_binary_crossentropy() # OR ...('from_logits=FALSE')
## <keras.src.losses.losses.BinaryCrossentropy object>
## signature: (y_true, y_pred, sample_weight=None)
# 2. Update `y_pred` to use probabilities instead of logits
y_pred <- c(0.6, 0.3, 0.2, 0.8) # OR [[0.6, 0.3], [0.2, 0.8]]
See also
Other losses: Loss()
loss_binary_focal_crossentropy()
loss_categorical_crossentropy()
loss_categorical_focal_crossentropy()
loss_categorical_hinge()
loss_cosine_similarity()
loss_ctc()
loss_dice()
loss_hinge()
loss_huber()
loss_kl_divergence()
loss_log_cosh()
loss_mean_absolute_error()
loss_mean_absolute_percentage_error()
loss_mean_squared_error()
loss_mean_squared_logarithmic_error()
loss_poisson()
loss_sparse_categorical_crossentropy()
loss_squared_hinge()
loss_tversky()
metric_binary_crossentropy()
metric_binary_focal_crossentropy()
metric_categorical_crossentropy()
metric_categorical_focal_crossentropy()
metric_categorical_hinge()
metric_hinge()
metric_huber()
metric_kl_divergence()
metric_log_cosh()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_poisson()
metric_sparse_categorical_crossentropy()
metric_squared_hinge()