Computes the crossentropy metric between the labels and predictions.
Source:R/metrics.R
metric_binary_crossentropy.Rd
This is the crossentropy metric class to be used when there are only two label classes (0 and 1).
Usage
metric_binary_crossentropy(
y_true,
y_pred,
from_logits = FALSE,
label_smoothing = 0,
axis = -1L,
...,
name = "binary_crossentropy",
dtype = NULL
)
Arguments
- y_true
Ground truth values. shape =
[batch_size, d0, .. dN]
.- y_pred
The predicted values. shape =
[batch_size, d0, .. dN]
.- from_logits
(Optional) Whether output is expected to be a logits tensor. By default, we consider that output encodes a probability distribution.
- label_smoothing
(Optional) Float in
[0, 1]
. When > 0, label values are smoothed, meaning the confidence on label values are relaxed. e.g.label_smoothing=0.2
means that we will use a value of 0.1 for label "0" and 0.9 for label "1".- axis
The axis along which the mean is computed. Defaults to
-1
.- ...
For forward/backward compatability.
- name
(Optional) string name of the metric instance.
- dtype
(Optional) data type of the metric result.
Value
If y_true
and y_pred
are missing, a Metric
instance is returned. The Metric
instance that can be passed directly to
compile(metrics = )
, or used as a standalone object. See ?Metric
for
example usage. If y_true
and y_pred
are provided, then a tensor with
the computed value is returned.
Examples
Standalone usage:
m <- metric_binary_crossentropy()
m$update_state(rbind(c(0, 1), c(0, 0)), rbind(c(0.6, 0.4), c(0.4, 0.6)))
m$result()
m$reset_state()
m$update_state(rbind(c(0, 1), c(0, 0)), rbind(c(0.6, 0.4), c(0.4, 0.6)),
sample_weight=c(1, 0))
m$result()
Usage with compile()
API:
model %>% compile(
optimizer = 'sgd',
loss = 'mse',
metrics = list(metric_binary_crossentropy()))
See also
Other losses: Loss()
loss_binary_crossentropy()
loss_binary_focal_crossentropy()
loss_categorical_crossentropy()
loss_categorical_focal_crossentropy()
loss_categorical_hinge()
loss_cosine_similarity()
loss_ctc()
loss_dice()
loss_hinge()
loss_huber()
loss_kl_divergence()
loss_log_cosh()
loss_mean_absolute_error()
loss_mean_absolute_percentage_error()
loss_mean_squared_error()
loss_mean_squared_logarithmic_error()
loss_poisson()
loss_sparse_categorical_crossentropy()
loss_squared_hinge()
loss_tversky()
metric_binary_focal_crossentropy()
metric_categorical_crossentropy()
metric_categorical_focal_crossentropy()
metric_categorical_hinge()
metric_hinge()
metric_huber()
metric_kl_divergence()
metric_log_cosh()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_poisson()
metric_sparse_categorical_crossentropy()
metric_squared_hinge()
Other metrics: Metric()
custom_metric()
metric_auc()
metric_binary_accuracy()
metric_binary_focal_crossentropy()
metric_binary_iou()
metric_categorical_accuracy()
metric_categorical_crossentropy()
metric_categorical_focal_crossentropy()
metric_categorical_hinge()
metric_cosine_similarity()
metric_f1_score()
metric_false_negatives()
metric_false_positives()
metric_fbeta_score()
metric_hinge()
metric_huber()
metric_iou()
metric_kl_divergence()
metric_log_cosh()
metric_log_cosh_error()
metric_mean()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_iou()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_mean_wrapper()
metric_one_hot_iou()
metric_one_hot_mean_iou()
metric_poisson()
metric_precision()
metric_precision_at_recall()
metric_r2_score()
metric_recall()
metric_recall_at_precision()
metric_root_mean_squared_error()
metric_sensitivity_at_specificity()
metric_sparse_categorical_accuracy()
metric_sparse_categorical_crossentropy()
metric_sparse_top_k_categorical_accuracy()
metric_specificity_at_sensitivity()
metric_squared_hinge()
metric_sum()
metric_top_k_categorical_accuracy()
metric_true_negatives()
metric_true_positives()
Other probabilistic metrics: metric_categorical_crossentropy()
metric_kl_divergence()
metric_poisson()
metric_sparse_categorical_crossentropy()