Computes the crossentropy metric between the labels and predictions.
Source:R/metrics.R
metric_binary_crossentropy.RdThis is the crossentropy metric class to be used when there are only two label classes (0 and 1).
Usage
metric_binary_crossentropy(
y_true,
y_pred,
from_logits = FALSE,
label_smoothing = 0,
axis = -1L,
...,
name = "binary_crossentropy",
dtype = NULL
)Arguments
- y_true
Ground truth values. shape =
[batch_size, d0, .. dN].- y_pred
The predicted values. shape =
[batch_size, d0, .. dN].- from_logits
(Optional) Whether output is expected to be a logits tensor. By default, we consider that output encodes a probability distribution.
- label_smoothing
(Optional) Float in
[0, 1]. When > 0, label values are smoothed, meaning the confidence on label values are relaxed. e.g.label_smoothing=0.2means that we will use a value of 0.1 for label "0" and 0.9 for label "1".- axis
The axis along which the mean is computed. Defaults to
-1.- ...
For forward/backward compatability.
- name
(Optional) string name of the metric instance.
- dtype
(Optional) data type of the metric result.
Value
If y_true and y_pred are missing, a Metric
instance is returned. The Metric instance that can be passed directly to
compile(metrics = ), or used as a standalone object. See ?Metric for
example usage. If y_true and y_pred are provided, then a tensor with
the computed value is returned.
Examples
Standalone usage:
m <- metric_binary_crossentropy()
m$update_state(rbind(c(0, 1), c(0, 0)), rbind(c(0.6, 0.4), c(0.4, 0.6)))
m$result()m$reset_state()
m$update_state(rbind(c(0, 1), c(0, 0)), rbind(c(0.6, 0.4), c(0.4, 0.6)),
sample_weight=c(1, 0))
m$result()Usage with compile() API:
model %>% compile(
optimizer = 'sgd',
loss = 'mse',
metrics = list(metric_binary_crossentropy()))See also
Other losses: Loss() loss_binary_crossentropy() loss_binary_focal_crossentropy() loss_categorical_crossentropy() loss_categorical_focal_crossentropy() loss_categorical_generalized_cross_entropy() loss_categorical_hinge() loss_circle() loss_cosine_similarity() loss_ctc() loss_dice() loss_hinge() loss_huber() loss_kl_divergence() loss_log_cosh() loss_mean_absolute_error() loss_mean_absolute_percentage_error() loss_mean_squared_error() loss_mean_squared_logarithmic_error() loss_poisson() loss_sparse_categorical_crossentropy() loss_squared_hinge() loss_tversky() metric_binary_focal_crossentropy() metric_categorical_crossentropy() metric_categorical_focal_crossentropy() metric_categorical_hinge() metric_hinge() metric_huber() metric_kl_divergence() metric_log_cosh() metric_mean_absolute_error() metric_mean_absolute_percentage_error() metric_mean_squared_error() metric_mean_squared_logarithmic_error() metric_poisson() metric_sparse_categorical_crossentropy() metric_squared_hinge()
Other metrics: Metric() custom_metric() metric_auc() metric_binary_accuracy() metric_binary_focal_crossentropy() metric_binary_iou() metric_categorical_accuracy() metric_categorical_crossentropy() metric_categorical_focal_crossentropy() metric_categorical_hinge() metric_concordance_correlation() metric_cosine_similarity() metric_f1_score() metric_false_negatives() metric_false_positives() metric_fbeta_score() metric_hinge() metric_huber() metric_iou() metric_kl_divergence() metric_log_cosh() metric_log_cosh_error() metric_mean() metric_mean_absolute_error() metric_mean_absolute_percentage_error() metric_mean_iou() metric_mean_squared_error() metric_mean_squared_logarithmic_error() metric_mean_wrapper() metric_one_hot_iou() metric_one_hot_mean_iou() metric_pearson_correlation() metric_poisson() metric_precision() metric_precision_at_recall() metric_r2_score() metric_recall() metric_recall_at_precision() metric_root_mean_squared_error() metric_sensitivity_at_specificity() metric_sparse_categorical_accuracy() metric_sparse_categorical_crossentropy() metric_sparse_top_k_categorical_accuracy() metric_specificity_at_sensitivity() metric_squared_hinge() metric_sum() metric_top_k_categorical_accuracy() metric_true_negatives() metric_true_positives()
Other probabilistic metrics: metric_categorical_crossentropy() metric_kl_divergence() metric_poisson() metric_sparse_categorical_crossentropy()