Formula:
iou <- true_positives / (true_positives + false_positives + false_negatives)
Intersection-Over-Union is a common evaluation metric for semantic image segmentation.
To compute IoUs, the predictions are accumulated in a confusion matrix,
weighted by sample_weight
and the metric is then calculated from it.
If sample_weight
is NULL
, weights default to 1.
Use sample_weight
of 0 to mask values.
Note that this class first computes IoUs for all individual classes, then returns the mean of these values.
Usage
metric_mean_iou(
...,
num_classes,
name = NULL,
dtype = NULL,
ignore_class = NULL,
sparse_y_true = TRUE,
sparse_y_pred = TRUE,
axis = -1L
)
Arguments
- ...
For forward/backward compatability.
- num_classes
The possible number of labels the prediction task can have. This value must be provided, since a confusion matrix of dimension =
[num_classes, num_classes]
will be allocated.- name
(Optional) string name of the metric instance.
- dtype
(Optional) data type of the metric result.
- ignore_class
Optional integer. The ID of a class to be ignored during metric computation. This is useful, for example, in segmentation problems featuring a "void" class (commonly -1 or 255) in segmentation maps. By default (
ignore_class=NULL
), all classes are considered.- sparse_y_true
Whether labels are encoded using integers or dense floating point vectors. If
FALSE
, theargmax
function is used to determine each sample's most likely associated label.- sparse_y_pred
Whether predictions are encoded using integers or dense floating point vectors. If
FALSE
, theargmax
function is used to determine each sample's most likely associated label.- axis
(Optional) The dimension containing the logits. Defaults to
-1
.
Value
a Metric
instance is returned. The Metric
instance can be passed
directly to compile(metrics = )
, or used as a standalone object. See
?Metric
for example usage.
Examples
Standalone usage:
# cm = [[1, 1],
# [1, 1]]
# sum_row = [2, 2], sum_col = [2, 2], true_positives = [1, 1]
# iou = true_positives / (sum_row + sum_col - true_positives))
# result = (1 / (2 + 2 - 1) + 1 / (2 + 2 - 1)) / 2 = 0.33
m <- metric_mean_iou(num_classes = 2)
m$update_state(c(0, 0, 1, 1), c(0, 1, 0, 1))
m$result()
m$result()
Usage with compile()
API:
model %>% compile(
optimizer = 'sgd',
loss = 'mse',
metrics = list(metric_mean_iou(num_classes=2)))
See also
Other iou metrics: metric_binary_iou()
metric_iou()
metric_one_hot_iou()
metric_one_hot_mean_iou()
Other metrics: Metric()
custom_metric()
metric_auc()
metric_binary_accuracy()
metric_binary_crossentropy()
metric_binary_focal_crossentropy()
metric_binary_iou()
metric_categorical_accuracy()
metric_categorical_crossentropy()
metric_categorical_focal_crossentropy()
metric_categorical_hinge()
metric_cosine_similarity()
metric_f1_score()
metric_false_negatives()
metric_false_positives()
metric_fbeta_score()
metric_hinge()
metric_huber()
metric_iou()
metric_kl_divergence()
metric_log_cosh()
metric_log_cosh_error()
metric_mean()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_mean_wrapper()
metric_one_hot_iou()
metric_one_hot_mean_iou()
metric_poisson()
metric_precision()
metric_precision_at_recall()
metric_r2_score()
metric_recall()
metric_recall_at_precision()
metric_root_mean_squared_error()
metric_sensitivity_at_specificity()
metric_sparse_categorical_accuracy()
metric_sparse_categorical_crossentropy()
metric_sparse_top_k_categorical_accuracy()
metric_specificity_at_sensitivity()
metric_squared_hinge()
metric_sum()
metric_top_k_categorical_accuracy()
metric_true_negatives()
metric_true_positives()