A Metric
object encapsulates metric logic and state that can be used to
track model performance during training. It is what is returned by the family
of metric functions that start with prefix metric_*
, as well as what is
returned by custom metrics defined with Metric()
.
Usage
Metric(
classname,
initialize = NULL,
update_state = NULL,
result = NULL,
...,
public = list(),
private = list(),
inherit = NULL,
parent_env = parent.frame()
)
Arguments
- classname
String, the name of the custom class. (Conventionally, CamelCase).
- initialize, update_state, result
Recommended methods to implement. See description section.
- ..., public
Additional methods or public members of the custom class.
- private
Named list of R objects (typically, functions) to include in instance private environments.
private
methods will have all the same symbols in scope as public methods (See section "Symbols in Scope"). Each instance will have it's ownprivate
environment. Any objects inprivate
will be invisible from the Keras framework and the Python runtime.- inherit
What the custom class will subclass. By default, the base keras class.
- parent_env
The R environment that all class methods will have as a grandparent.
Examples
Usage with compile()
:
Full Examples
Usage with compile()
:
model <- keras_model_sequential()
model |>
layer_dense(64, activation = "relu") |>
layer_dense(64, activation = "relu") |>
layer_dense(10, activation = "softmax")
model |>
compile(optimizer = optimizer_rmsprop(0.01),
loss = loss_categorical_crossentropy(),
metrics = metric_categorical_accuracy())
data <- random_uniform(c(1000, 32))
labels <- random_uniform(c(1000, 10))
model |> fit(data, labels, verbose = 0)
To be implemented by subclasses (custom metrics):
initialize()
: All state variables should be created in this method by callingself$add_variable()
like:self$var <- self$add_variable(...)
.update_state()
: Updates all the state variables like:self$var$assign(...)
.result()
: Computes and returns a scalar value or a named list of scalar values for the metric from the state variables.
Example subclass implementation:
metric_binary_true_positives <- Metric(
classname = "BinaryTruePositives",
initialize = function(name = 'binary_true_positives', ...) {
super$initialize(name = name, ...)
self$true_positives <-
self$add_weight(shape = shape(),
initializer = 'zeros',
name = 'true_positives')
},
update_state = function(y_true, y_pred, sample_weight = NULL) {
y_true <- op_cast(y_true, "bool")
y_pred <- op_cast(y_pred, "bool")
values <- y_true & y_pred # `&` calls op_logical_and()
values <- op_cast(values, self$dtype)
if (!is.null(sample_weight)) {
sample_weight <- op_cast(sample_weight, self$dtype)
sample_weight <- op_broadcast_to(sample_weight, shape(values))
values <- values * sample_weight # `*` calls op_multiply()
}
self$true_positives$assign(self$true_positives + op_sum(values))
},
result = function() {
self$true_positives
}
)
model <- keras_model_sequential(input_shape = 32) |> layer_dense(10)
model |> compile(loss = loss_binary_crossentropy(),
metrics = list(metric_binary_true_positives()))
model |> fit(data, labels, verbose = 0)
Methods defined by the base Metric
class:
-
Calling a metric instance self like
m(...)
is equivalent to calling:function(...) { m$update_state(...) m$result() }
-
initialize(dtype=NULL, name=NULL)
Initialize self.
Args:
name
: Optional name for the metric instance.dtype
: The dtype of the metric's computations. Defaults toNULL
, which means usingconfig_floatx()
.config_floatx()
is a"float32"
unless set to different value (viaconfig_set_floatx()
). If akeras$DTypePolicy
is provided, then thecompute_dtype
will be utilized.
-
add_variable(shape, initializer, dtype=NULL, aggregation = 'sum', name=NULL)
-
add_weight(shape=shape(), initializer=NULL, dtype=NULL, name=NULL)
-
Return the serializable config of the metric.
-
Reset all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
-
result()
Compute the current metric value.
Returns: A scalar tensor, or a named list of scalar tensors.
-
stateless_result(metric_variables)
-
stateless_reset_state()
-
stateless_update_state(metric_variables, ...)
-
update_state(...)
Accumulate statistics for the metric.
Symbols in scope
All R function custom methods (public and private) will have the following symbols in scope:
self
: The custom class instance.super
: The custom class superclass.private
: An R environment specific to the class instance. Any objects assigned here are invisible to the Keras framework.__class__
andas.symbol(classname)
: the custom class type object.
See also
Other metrics: custom_metric()
metric_auc()
metric_binary_accuracy()
metric_binary_crossentropy()
metric_binary_focal_crossentropy()
metric_binary_iou()
metric_categorical_accuracy()
metric_categorical_crossentropy()
metric_categorical_focal_crossentropy()
metric_categorical_hinge()
metric_cosine_similarity()
metric_f1_score()
metric_false_negatives()
metric_false_positives()
metric_fbeta_score()
metric_hinge()
metric_huber()
metric_iou()
metric_kl_divergence()
metric_log_cosh()
metric_log_cosh_error()
metric_mean()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_iou()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_mean_wrapper()
metric_one_hot_iou()
metric_one_hot_mean_iou()
metric_poisson()
metric_precision()
metric_precision_at_recall()
metric_r2_score()
metric_recall()
metric_recall_at_precision()
metric_root_mean_squared_error()
metric_sensitivity_at_specificity()
metric_sparse_categorical_accuracy()
metric_sparse_categorical_crossentropy()
metric_sparse_top_k_categorical_accuracy()
metric_specificity_at_sensitivity()
metric_squared_hinge()
metric_sum()
metric_top_k_categorical_accuracy()
metric_true_negatives()
metric_true_positives()