Computes the recall of the predictions with respect to the labels.
Source:R/metrics.R
metric_recall.Rd
This metric creates two local variables, true_positives
and
false_negatives
, that are used to compute the recall. This value is
ultimately returned as recall
, an idempotent operation that simply divides
true_positives
by the sum of true_positives
and false_negatives
.
If sample_weight
is NULL
, weights default to 1.
Use sample_weight
of 0 to mask values.
If top_k
is set, recall will be computed as how often on average a class
among the labels of a batch entry is in the top-k predictions.
If class_id
is specified, we calculate recall by considering only the
entries in the batch for which class_id
is in the label, and computing the
fraction of them for which class_id
is above the threshold and/or in the
top-k predictions.
Usage
metric_recall(
...,
thresholds = NULL,
top_k = NULL,
class_id = NULL,
name = NULL,
dtype = NULL
)
Arguments
- ...
For forward/backward compatability.
- thresholds
(Optional) A float value, or a Python list of float threshold values in
[0, 1]
. A threshold is compared with prediction values to determine the truth value of predictions (i.e., above the threshold isTRUE
, below isFALSE
). If used with a loss function that setsfrom_logits=TRUE
(i.e. no sigmoid applied to predictions),thresholds
should be set to 0. One metric value is generated for each threshold value. If neitherthresholds
nortop_k
are set, the default is to calculate recall withthresholds=0.5
.- top_k
(Optional) Unset by default. An int value specifying the top-k predictions to consider when calculating recall.
- class_id
(Optional) Integer class ID for which we want binary metrics. This must be in the half-open interval
[0, num_classes)
, wherenum_classes
is the last dimension of predictions.- name
(Optional) string name of the metric instance.
- dtype
(Optional) data type of the metric result.
Value
a Metric
instance is returned. The Metric
instance can be passed
directly to compile(metrics = )
, or used as a standalone object. See
?Metric
for example usage.
Usage
Standalone usage:
m <- metric_recall()
m$update_state(c(0, 1, 1, 1),
c(1, 0, 1, 1))
m$result()
m$reset_state()
m$update_state(c(0, 1, 1, 1),
c(1, 0, 1, 1),
sample_weight = c(0, 0, 1, 0))
m$result()
Usage with compile()
API:
model |> compile(
optimizer = 'sgd',
loss = 'binary_crossentropy',
metrics = list(metric_recall())
)
Usage with a loss with from_logits=TRUE
:
model |> compile(
optimizer = 'adam',
loss = loss_binary_crossentropy(from_logits = TRUE),
metrics = list(metric_recall(thresholds = 0))
)
See also
Other confusion metrics: metric_auc()
metric_false_negatives()
metric_false_positives()
metric_precision()
metric_precision_at_recall()
metric_recall_at_precision()
metric_sensitivity_at_specificity()
metric_specificity_at_sensitivity()
metric_true_negatives()
metric_true_positives()
Other metrics: Metric()
custom_metric()
metric_auc()
metric_binary_accuracy()
metric_binary_crossentropy()
metric_binary_focal_crossentropy()
metric_binary_iou()
metric_categorical_accuracy()
metric_categorical_crossentropy()
metric_categorical_focal_crossentropy()
metric_categorical_hinge()
metric_cosine_similarity()
metric_f1_score()
metric_false_negatives()
metric_false_positives()
metric_fbeta_score()
metric_hinge()
metric_huber()
metric_iou()
metric_kl_divergence()
metric_log_cosh()
metric_log_cosh_error()
metric_mean()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_iou()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_mean_wrapper()
metric_one_hot_iou()
metric_one_hot_mean_iou()
metric_poisson()
metric_precision()
metric_precision_at_recall()
metric_r2_score()
metric_recall_at_precision()
metric_root_mean_squared_error()
metric_sensitivity_at_specificity()
metric_sparse_categorical_accuracy()
metric_sparse_categorical_crossentropy()
metric_sparse_top_k_categorical_accuracy()
metric_specificity_at_sensitivity()
metric_squared_hinge()
metric_sum()
metric_top_k_categorical_accuracy()
metric_true_negatives()
metric_true_positives()