Computes the Intersection-Over-Union metric for class 0 and/or 1.
Source:R/metrics.R
metric_binary_iou.RdFormula:
iou <- true_positives / (true_positives + false_positives + false_negatives)Intersection-Over-Union is a common evaluation metric for semantic image segmentation.
To compute IoUs, the predictions are accumulated in a confusion matrix,
weighted by sample_weight and the metric is then calculated from it.
If sample_weight is NULL, weights default to 1.
Use sample_weight of 0 to mask values.
This class can be used to compute IoUs for a binary classification task
where the predictions are provided as logits. First a threshold is applied
to the predicted values such that those that are below the threshold are
converted to class 0 and those that are above the threshold are converted
to class 1.
IoUs for classes 0 and 1 are then computed, the mean of IoUs for the classes
that are specified by target_class_ids is returned.
Usage
metric_binary_iou(
...,
target_class_ids = list(0L, 1L),
threshold = 0.5,
name = NULL,
dtype = NULL
)Arguments
- ...
For forward/backward compatability.
- target_class_ids
A list or list of target class ids for which the metric is returned. Options are
0,1, orc(0, 1). With0(or1), the IoU metric for class 0 (or class 1, respectively) is returned. Withc(0, 1), the mean of IoUs for the two classes is returned.- threshold
A threshold that applies to the prediction logits to convert them to either predicted class 0 if the logit is below
thresholdor predicted class 1 if the logit is abovethreshold.- name
(Optional) string name of the metric instance.
- dtype
(Optional) data type of the metric result.
Value
a Metric instance is returned. The Metric instance can be passed
directly to compile(metrics = ), or used as a standalone object. See
?Metric for example usage.
Examples
Standalone usage:
m <- metric_binary_iou(target_class_ids=c(0L, 1L), threshold = 0.3)
m$update_state(c(0, 1, 0, 1), c(0.1, 0.2, 0.4, 0.7))m$result()m$reset_state()
m$update_state(c(0, 1, 0, 1), c(0.1, 0.2, 0.4, 0.7),
sample_weight = 10 * c(0.2, 0.3, 0.4, 0.1))m$result()Usage with compile() API:
model %>% compile(
optimizer = 'sgd',
loss = 'mse',
metrics = list(metric_binary_iou(
target_class_ids = 0L,
threshold = 0.5
))
)See also
Other iou metrics: metric_iou() metric_mean_iou() metric_one_hot_iou() metric_one_hot_mean_iou()
Other metrics: Metric() custom_metric() metric_auc() metric_binary_accuracy() metric_binary_crossentropy() metric_binary_focal_crossentropy() metric_categorical_accuracy() metric_categorical_crossentropy() metric_categorical_focal_crossentropy() metric_categorical_hinge() metric_concordance_correlation() metric_cosine_similarity() metric_f1_score() metric_false_negatives() metric_false_positives() metric_fbeta_score() metric_hinge() metric_huber() metric_iou() metric_kl_divergence() metric_log_cosh() metric_log_cosh_error() metric_mean() metric_mean_absolute_error() metric_mean_absolute_percentage_error() metric_mean_iou() metric_mean_squared_error() metric_mean_squared_logarithmic_error() metric_mean_wrapper() metric_one_hot_iou() metric_one_hot_mean_iou() metric_pearson_correlation() metric_poisson() metric_precision() metric_precision_at_recall() metric_r2_score() metric_recall() metric_recall_at_precision() metric_root_mean_squared_error() metric_sensitivity_at_specificity() metric_sparse_categorical_accuracy() metric_sparse_categorical_crossentropy() metric_sparse_top_k_categorical_accuracy() metric_specificity_at_sensitivity() metric_squared_hinge() metric_sum() metric_top_k_categorical_accuracy() metric_true_negatives() metric_true_positives()