Calculates how often predictions match one-hot labels.
Source:R/metrics.R
metric_categorical_accuracy.Rd
You can provide logits of classes as y_pred
, since argmax of
logits and probabilities are same.
This metric creates two local variables, total
and count
that are used
to compute the frequency with which y_pred
matches y_true
. This
frequency is ultimately returned as categorical accuracy
: an idempotent
operation that simply divides total
by count
.
y_pred
and y_true
should be passed in as vectors of probabilities,
rather than as labels. If necessary, use op_one_hot
to expand y_true
as
a vector.
If sample_weight
is NULL
, weights default to 1.
Use sample_weight
of 0 to mask values.
Usage
metric_categorical_accuracy(
y_true,
y_pred,
...,
name = "categorical_accuracy",
dtype = NULL
)
Value
If y_true
and y_pred
are missing, a Metric
instance is returned. The Metric
instance that can be passed directly to
compile(metrics = )
, or used as a standalone object. See ?Metric
for
example usage. If y_true
and y_pred
are provided, then a tensor with
the computed value is returned.
Usage
Standalone usage:
m <- metric_categorical_accuracy()
m$update_state(rbind(c(0, 0, 1), c(0, 1, 0)), rbind(c(0.1, 0.9, 0.8),
c(0.05, 0.95, 0)))
m$result()
m$reset_state()
m$update_state(rbind(c(0, 0, 1), c(0, 1, 0)), rbind(c(0.1, 0.9, 0.8),
c(0.05, 0.95, 0)),
sample_weight = c(0.7, 0.3))
m$result()
# 0.3
Usage with compile()
API:
model %>% compile(optimizer = 'sgd',
loss = 'categorical_crossentropy',
metrics = list(metric_categorical_accuracy()))
See also
Other accuracy metrics: metric_binary_accuracy()
metric_sparse_categorical_accuracy()
metric_sparse_top_k_categorical_accuracy()
metric_top_k_categorical_accuracy()
Other metrics: Metric()
custom_metric()
metric_auc()
metric_binary_accuracy()
metric_binary_crossentropy()
metric_binary_focal_crossentropy()
metric_binary_iou()
metric_categorical_crossentropy()
metric_categorical_focal_crossentropy()
metric_categorical_hinge()
metric_cosine_similarity()
metric_f1_score()
metric_false_negatives()
metric_false_positives()
metric_fbeta_score()
metric_hinge()
metric_huber()
metric_iou()
metric_kl_divergence()
metric_log_cosh()
metric_log_cosh_error()
metric_mean()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_iou()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_mean_wrapper()
metric_one_hot_iou()
metric_one_hot_mean_iou()
metric_poisson()
metric_precision()
metric_precision_at_recall()
metric_r2_score()
metric_recall()
metric_recall_at_precision()
metric_root_mean_squared_error()
metric_sensitivity_at_specificity()
metric_sparse_categorical_accuracy()
metric_sparse_categorical_crossentropy()
metric_sparse_top_k_categorical_accuracy()
metric_specificity_at_sensitivity()
metric_squared_hinge()
metric_sum()
metric_top_k_categorical_accuracy()
metric_true_negatives()
metric_true_positives()