For example, if values is [1, 3, 5, 7] then their sum is 16.
If sample_weight was specified as [1, 1, 0, 0] then the sum would be 4.
This metric creates one variable, total.
This is ultimately returned as the sum value.
Value
a Metric instance is returned. The Metric instance can be passed
directly to compile(metrics = ), or used as a standalone object. See
?Metric for example usage.
Examples
m <- metric_sum()
m$update_state(c(1, 3, 5, 7))
m$result()m <- metric_sum()
m$update_state(c(1, 3, 5, 7), sample_weight = c(1, 1, 0, 0))
m$result()See also
Other reduction metrics: metric_mean() metric_mean_wrapper()
Other metrics: Metric() custom_metric() metric_auc() metric_binary_accuracy() metric_binary_crossentropy() metric_binary_focal_crossentropy() metric_binary_iou() metric_categorical_accuracy() metric_categorical_crossentropy() metric_categorical_focal_crossentropy() metric_categorical_hinge() metric_concordance_correlation() metric_cosine_similarity() metric_f1_score() metric_false_negatives() metric_false_positives() metric_fbeta_score() metric_hinge() metric_huber() metric_iou() metric_kl_divergence() metric_log_cosh() metric_log_cosh_error() metric_mean() metric_mean_absolute_error() metric_mean_absolute_percentage_error() metric_mean_iou() metric_mean_squared_error() metric_mean_squared_logarithmic_error() metric_mean_wrapper() metric_one_hot_iou() metric_one_hot_mean_iou() metric_pearson_correlation() metric_poisson() metric_precision() metric_precision_at_recall() metric_r2_score() metric_recall() metric_recall_at_precision() metric_root_mean_squared_error() metric_sensitivity_at_specificity() metric_sparse_categorical_accuracy() metric_sparse_categorical_crossentropy() metric_sparse_top_k_categorical_accuracy() metric_specificity_at_sensitivity() metric_squared_hinge() metric_top_k_categorical_accuracy() metric_true_negatives() metric_true_positives()