Computes the cosine similarity between the labels and predictions.
Source:R/metrics.R
metric_cosine_similarity.RdFormula:
loss <- sum(l2_norm(y_true) * l2_norm(y_pred))See: Cosine Similarity.
This metric keeps the average cosine similarity between predictions and
labels over a stream of data.
Value
a Metric instance is returned. The Metric instance can be passed
directly to compile(metrics = ), or used as a standalone object. See
?Metric for example usage.
Examples
Standalone usage:
m <- metric_cosine_similarity(axis=2)
m$update_state(rbind(c(0., 1.), c(1., 1.)), rbind(c(1., 0.), c(1., 1.)))
m$result()m$reset_state()
m$update_state(rbind(c(0., 1.), c(1., 1.)), rbind(c(1., 0.), c(1., 1.)),
sample_weight = c(0.3, 0.7))
m$result()Usage with compile() API:
model %>% compile(
optimizer = 'sgd',
loss = 'mse',
metrics = list(metric_cosine_similarity(axis=2)))See also
Other regression metrics: metric_concordance_correlation() metric_log_cosh_error() metric_mean_absolute_error() metric_mean_absolute_percentage_error() metric_mean_squared_error() metric_mean_squared_logarithmic_error() metric_pearson_correlation() metric_r2_score() metric_root_mean_squared_error()
Other metrics: Metric() custom_metric() metric_auc() metric_binary_accuracy() metric_binary_crossentropy() metric_binary_focal_crossentropy() metric_binary_iou() metric_categorical_accuracy() metric_categorical_crossentropy() metric_categorical_focal_crossentropy() metric_categorical_hinge() metric_concordance_correlation() metric_f1_score() metric_false_negatives() metric_false_positives() metric_fbeta_score() metric_hinge() metric_huber() metric_iou() metric_kl_divergence() metric_log_cosh() metric_log_cosh_error() metric_mean() metric_mean_absolute_error() metric_mean_absolute_percentage_error() metric_mean_iou() metric_mean_squared_error() metric_mean_squared_logarithmic_error() metric_mean_wrapper() metric_one_hot_iou() metric_one_hot_mean_iou() metric_pearson_correlation() metric_poisson() metric_precision() metric_precision_at_recall() metric_r2_score() metric_recall() metric_recall_at_precision() metric_root_mean_squared_error() metric_sensitivity_at_specificity() metric_sparse_categorical_accuracy() metric_sparse_categorical_crossentropy() metric_sparse_top_k_categorical_accuracy() metric_specificity_at_sensitivity() metric_squared_hinge() metric_sum() metric_top_k_categorical_accuracy() metric_true_negatives() metric_true_positives()