Computes the cosine similarity between the labels and predictions.
Source:R/metrics.R
metric_cosine_similarity.Rd
Formula:
loss <- sum(l2_norm(y_true) * l2_norm(y_pred))
See: Cosine Similarity.
This metric keeps the average cosine similarity between predictions
and
labels
over a stream of data.
Value
a Metric
instance is returned. The Metric
instance can be passed
directly to compile(metrics = )
, or used as a standalone object. See
?Metric
for example usage.
Examples
Standalone usage:
m <- metric_cosine_similarity(axis=2)
m$update_state(rbind(c(0., 1.), c(1., 1.)), rbind(c(1., 0.), c(1., 1.)))
m$result()
m$reset_state()
m$update_state(rbind(c(0., 1.), c(1., 1.)), rbind(c(1., 0.), c(1., 1.)),
sample_weight = c(0.3, 0.7))
m$result()
Usage with compile()
API:
model %>% compile(
optimizer = 'sgd',
loss = 'mse',
metrics = list(metric_cosine_similarity(axis=2)))
See also
Other regression metrics: metric_log_cosh_error()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_r2_score()
metric_root_mean_squared_error()
Other metrics: Metric()
custom_metric()
metric_auc()
metric_binary_accuracy()
metric_binary_crossentropy()
metric_binary_focal_crossentropy()
metric_binary_iou()
metric_categorical_accuracy()
metric_categorical_crossentropy()
metric_categorical_focal_crossentropy()
metric_categorical_hinge()
metric_f1_score()
metric_false_negatives()
metric_false_positives()
metric_fbeta_score()
metric_hinge()
metric_huber()
metric_iou()
metric_kl_divergence()
metric_log_cosh()
metric_log_cosh_error()
metric_mean()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_iou()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_mean_wrapper()
metric_one_hot_iou()
metric_one_hot_mean_iou()
metric_poisson()
metric_precision()
metric_precision_at_recall()
metric_r2_score()
metric_recall()
metric_recall_at_precision()
metric_root_mean_squared_error()
metric_sensitivity_at_specificity()
metric_sparse_categorical_accuracy()
metric_sparse_categorical_crossentropy()
metric_sparse_top_k_categorical_accuracy()
metric_specificity_at_sensitivity()
metric_squared_hinge()
metric_sum()
metric_top_k_categorical_accuracy()
metric_true_negatives()
metric_true_positives()