Computes the crossentropy loss between the labels and predictions.
Source:R/losses.R
loss_categorical_crossentropy.Rd
Use this crossentropy loss function when there are two or more label
classes. We expect labels to be provided in a one_hot
representation. If
you want to provide labels as integers, please use
SparseCategoricalCrossentropy
loss. There should be num_classes
floating
point values per feature, i.e., the shape of both y_pred
and y_true
are
[batch_size, num_classes]
.
Usage
loss_categorical_crossentropy(
y_true,
y_pred,
from_logits = FALSE,
label_smoothing = 0,
axis = -1L,
...,
reduction = "sum_over_batch_size",
name = "categorical_crossentropy",
dtype = NULL
)
Arguments
- y_true
Tensor of one-hot true targets.
- y_pred
Tensor of predicted targets.
- from_logits
Whether
y_pred
is expected to be a logits tensor. By default, we assume thaty_pred
encodes a probability distribution.- label_smoothing
Float in
[0, 1].
When > 0, label values are smoothed, meaning the confidence on label values are relaxed. For example, if0.1
, use0.1 / num_classes
for non-target labels and0.9 + 0.1 / num_classes
for target labels.- axis
The axis along which to compute crossentropy (the features axis). Defaults to
-1
.- ...
For forward/backward compatability.
- reduction
Type of reduction to apply to the loss. In almost all cases this should be
"sum_over_batch_size"
. Supported options are"sum"
,"sum_over_batch_size"
orNULL
.- name
Optional name for the loss instance.
- dtype
The dtype of the loss's computations. Defaults to
NULL
, which means usingconfig_floatx()
.config_floatx()
is a"float32"
unless set to different value (viaconfig_set_floatx()
). If akeras$DTypePolicy
is provided, then thecompute_dtype
will be utilized.
Examples
y_true <- rbind(c(0, 1, 0), c(0, 0, 1))
y_pred <- rbind(c(0.05, 0.95, 0), c(0.1, 0.8, 0.1))
loss <- loss_categorical_crossentropy(y_true, y_pred)
loss
Standalone usage:
y_true <- rbind(c(0, 1, 0), c(0, 0, 1))
y_pred <- rbind(c(0.05, 0.95, 0), c(0.1, 0.8, 0.1))
# Using 'auto'/'sum_over_batch_size' reduction type.
cce <- loss_categorical_crossentropy()
cce(y_true, y_pred)
# Using 'sum' reduction type.
cce <- loss_categorical_crossentropy(reduction = "sum")
cce(y_true, y_pred)
# Using 'none' reduction type.
cce <- loss_categorical_crossentropy(reduction = NULL)
cce(y_true, y_pred)
Usage with the compile()
API:
model %>% compile(optimizer = 'sgd',
loss=loss_categorical_crossentropy())
See also
Other losses: Loss()
loss_binary_crossentropy()
loss_binary_focal_crossentropy()
loss_categorical_focal_crossentropy()
loss_categorical_hinge()
loss_cosine_similarity()
loss_ctc()
loss_dice()
loss_hinge()
loss_huber()
loss_kl_divergence()
loss_log_cosh()
loss_mean_absolute_error()
loss_mean_absolute_percentage_error()
loss_mean_squared_error()
loss_mean_squared_logarithmic_error()
loss_poisson()
loss_sparse_categorical_crossentropy()
loss_squared_hinge()
loss_tversky()
metric_binary_crossentropy()
metric_binary_focal_crossentropy()
metric_categorical_crossentropy()
metric_categorical_focal_crossentropy()
metric_categorical_hinge()
metric_hinge()
metric_huber()
metric_kl_divergence()
metric_log_cosh()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_poisson()
metric_sparse_categorical_crossentropy()
metric_squared_hinge()