Computes the generalized cross entropy loss.
Source:R/losses.R
loss_categorical_generalized_cross_entropy.Rd
The generalized cross entropy (GCE) loss offers robustness to noisy labels by
interpolating between categorical cross entropy (q -> 0
) and mean absolute
error (q -> 1
). For a true-class probability p
and noise parameter q
,
the loss is loss = (1 - p^q) / q
.
Usage
loss_categorical_generalized_cross_entropy(
y_true,
y_pred,
q = 0.5,
...,
reduction = "sum_over_batch_size",
name = "categorical_generalized_cross_entropy",
dtype = NULL
)
Arguments
- y_true
Integer class indices with shape
(batch_size)
or(batch_size, 1)
.- y_pred
Predicted class probabilities with shape
(batch_size, num_classes)
.- q
Float in
(0, 1)
. Controls the transition between cross entropy and mean absolute error. Defaults to0.5
.As
q
approaches0
: behaves like categorical cross entropy.As
q
approaches1
: behaves like mean absolute error.
- ...
For forward/backward compatibility.
- reduction
Type of reduction to apply to the loss. In almost all cases this should be
"sum_over_batch_size"
. Supported options are"sum"
,"sum_over_batch_size"
,"mean"
,"mean_with_sample_weight"
orNULL
."sum"
sums the loss,"sum_over_batch_size"
and"mean"
sum the loss and divide by the sample size, and"mean_with_sample_weight"
sums the loss and divides by the sum of the sample weights."none"
andNULL
perform no aggregation. Defaults to"sum_over_batch_size"
.- name
Optional name for the loss instance.
- dtype
Dtype used for loss computations. Defaults to
config_floatx()
(the global float type).
References
Zhang & Sabuncu (2018), "Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels"
Examples
See also
Other losses: Loss()
loss_binary_crossentropy()
loss_binary_focal_crossentropy()
loss_categorical_crossentropy()
loss_categorical_focal_crossentropy()
loss_categorical_hinge()
loss_circle()
loss_cosine_similarity()
loss_ctc()
loss_dice()
loss_hinge()
loss_huber()
loss_kl_divergence()
loss_log_cosh()
loss_mean_absolute_error()
loss_mean_absolute_percentage_error()
loss_mean_squared_error()
loss_mean_squared_logarithmic_error()
loss_poisson()
loss_sparse_categorical_crossentropy()
loss_squared_hinge()
loss_tversky()
metric_binary_crossentropy()
metric_binary_focal_crossentropy()
metric_categorical_crossentropy()
metric_categorical_focal_crossentropy()
metric_categorical_hinge()
metric_hinge()
metric_huber()
metric_kl_divergence()
metric_log_cosh()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_poisson()
metric_sparse_categorical_crossentropy()
metric_squared_hinge()