Computes the generalized cross entropy loss.
Source:R/losses.R
loss_categorical_generalized_cross_entropy.RdThe generalized cross entropy (GCE) loss offers robustness to noisy labels by
interpolating between categorical cross entropy (q -> 0) and mean absolute
error (q -> 1). For a true-class probability p and noise parameter q,
the loss is loss = (1 - p^q) / q.
Usage
loss_categorical_generalized_cross_entropy(
y_true,
y_pred,
q = 0.5,
...,
reduction = "sum_over_batch_size",
name = "categorical_generalized_cross_entropy",
dtype = NULL
)Arguments
- y_true
Integer class indices with shape
(batch_size)or(batch_size, 1).- y_pred
Predicted class probabilities with shape
(batch_size, num_classes).- q
Float in
(0, 1). Controls the transition between cross entropy and mean absolute error. Defaults to0.5.As
qapproaches0: behaves like categorical cross entropy.As
qapproaches1: behaves like mean absolute error.
- ...
For forward/backward compatibility.
- reduction
Type of reduction to apply to the loss. In almost all cases this should be
"sum_over_batch_size". Supported options are"sum","sum_over_batch_size","mean","mean_with_sample_weight"orNULL."sum"sums the loss,"sum_over_batch_size"and"mean"sum the loss and divide by the sample size, and"mean_with_sample_weight"sums the loss and divides by the sum of the sample weights."none"andNULLperform no aggregation. Defaults to"sum_over_batch_size".- name
Optional name for the loss instance.
- dtype
Dtype used for loss computations. Defaults to
config_floatx()(the global float type).
References
Zhang & Sabuncu (2018), "Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels"
Examples
See also
Other losses: Loss() loss_binary_crossentropy() loss_binary_focal_crossentropy() loss_categorical_crossentropy() loss_categorical_focal_crossentropy() loss_categorical_hinge() loss_circle() loss_cosine_similarity() loss_ctc() loss_dice() loss_hinge() loss_huber() loss_kl_divergence() loss_log_cosh() loss_mean_absolute_error() loss_mean_absolute_percentage_error() loss_mean_squared_error() loss_mean_squared_logarithmic_error() loss_poisson() loss_sparse_categorical_crossentropy() loss_squared_hinge() loss_tversky() metric_binary_crossentropy() metric_binary_focal_crossentropy() metric_categorical_crossentropy() metric_categorical_focal_crossentropy() metric_categorical_hinge() metric_hinge() metric_huber() metric_kl_divergence() metric_log_cosh() metric_mean_absolute_error() metric_mean_absolute_percentage_error() metric_mean_squared_error() metric_mean_squared_logarithmic_error() metric_poisson() metric_sparse_categorical_crossentropy() metric_squared_hinge()