Initializer that generates a truncated normal distribution.
Source:R/initializers.R
initializer_truncated_normal.Rd
The values generated are similar to values from a
RandomNormal
initializer, except that values more
than two standard deviations from the mean are
discarded and re-drawn.
Arguments
- mean
A numeric scalar. Mean of the random values to generate.
- stddev
A numeric scalar. Standard deviation of the random values to generate.
- seed
An integer or instance of
random_seed_generator()
. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer orNULL
(unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance ofrandom_seed_generator()
.
Value
An Initializer
instance that can be passed to layer or variable
constructors, or called directly with a shape
to return a Tensor.
Examples
# Standalone usage:
initializer <- initializer_truncated_normal(mean = 0, stddev = 1)
values <- initializer(shape = c(2, 2))
# Usage in a Keras layer:
initializer <- initializer_truncated_normal(mean = 0, stddev = 1)
layer <- layer_dense(units = 3, kernel_initializer = initializer)
See also
Other random initializers: initializer_glorot_normal()
initializer_glorot_uniform()
initializer_he_normal()
initializer_he_uniform()
initializer_lecun_normal()
initializer_lecun_uniform()
initializer_orthogonal()
initializer_random_normal()
initializer_random_uniform()
initializer_variance_scaling()
Other initializers: initializer_constant()
initializer_glorot_normal()
initializer_glorot_uniform()
initializer_he_normal()
initializer_he_uniform()
initializer_identity()
initializer_lecun_normal()
initializer_lecun_uniform()
initializer_ones()
initializer_orthogonal()
initializer_random_normal()
initializer_random_uniform()
initializer_variance_scaling()
initializer_zeros()