Initializers allow you to pre-specify an initialization strategy, encoded in the Initializer object, without knowing the shape and dtype of the variable being initialized.
Draws samples from a truncated normal distribution centered on 0 with
stddev = sqrt(1 / fan_in)
where fan_in
is the number of input units in
the weight tensor.
Arguments
- seed
An integer or instance of
random_seed_generator()
. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer orNULL
(unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance ofrandom_seed_generator()
.
Value
An Initializer
instance that can be passed to layer or variable
constructors, or called directly with a shape
to return a Tensor.
Examples
# Standalone usage:
initializer <- initializer_lecun_normal()
values <- initializer(shape = c(2, 2))
# Usage in a Keras layer:
initializer <- initializer_lecun_normal()
layer <- layer_dense(units = 3, kernel_initializer = initializer)
See also
Other random initializers: initializer_glorot_normal()
initializer_glorot_uniform()
initializer_he_normal()
initializer_he_uniform()
initializer_lecun_uniform()
initializer_orthogonal()
initializer_random_normal()
initializer_random_uniform()
initializer_truncated_normal()
initializer_variance_scaling()
Other initializers: initializer_constant()
initializer_glorot_normal()
initializer_glorot_uniform()
initializer_he_normal()
initializer_he_uniform()
initializer_identity()
initializer_lecun_uniform()
initializer_ones()
initializer_orthogonal()
initializer_random_normal()
initializer_random_uniform()
initializer_truncated_normal()
initializer_variance_scaling()
initializer_zeros()